Wearable inertial sensors are providing enhanced insight into patient mobility and health. Significant research efforts have focused on wearable algorithm design and deployment in both research and clinical settings; however, open-source, general-purpose software tools for processing various activities of daily living are relatively scarce. Furthermore, few studies include code for replication or off-the-shelf software packages. In this work, we introduce SciKit Digital Health (SKDH), a Python software package (Python Software Foundation) containing various algorithms for deriving clinical features of gait, sit to stand, physical activity, and sleep, wrapped in an easily extensible framework.

Article Type:
Research Article
Authors:
Lukas Adamowicz, Yiorgos Christakis, Matthew D. Czech, Tomasz Adamusiak
Publication Date:
21 April 2022